
Multi-Fidelity Functions Documentation

Sander van Rijn

Jun 09, 2022

Contents

1 Contents 3
1.1 Installation . 3
1.2 Example Usage . 3
1.3 Performance . 6
1.4 Getting Started . 8
1.5 mf2 package . 11

2 Indices and tables 23

Python Module Index 25

Index 27

i

ii

Multi-Fidelity Functions Documentation

This is the documentation for the mf2 package. For a short introduction with examples, have a look at the Getting
Started page. Otherwise, you can look at the available functions in the package by category.

The mf2 package provides consistent, efficient and tested Python implementations of a variety of multi-fidelity bench-
mark functions. The goal is to simplify life for numerical optimization researchers by saving time otherwise spent
reimplementing and debugging the same common functions, and enabling direct comparisons with other work using
the same definitions, improving reproducibility in general.

A multi-fidelity function usually reprensents an objective which should be optimized. The term ‘multi-fidelity’ refers
to the fact, that multiple versions of the objective function exist which differ in the accuray to describe the real
objective. A typical real-world example would be the aerodynamic efficiency of an airfoil, e.g., its drag value for a
given lift value. The different fidelity levels are given by the accuracy of the evaluation method used to estimate the
efficiency. Lower-fidelity versions of the objective function refer to less accurate, but simpler approximations of the
objective, such as computational fluid dynamic simulations on rather coarse meshes, whereas higher fidelity levels
refer to more accurate but also much more demaning evaluations such as prototype tests in wind tunnels. The hope of
multi-fildelity optimization approaches is that many of the not-so-accurate but simple low-fidelity evaluations can be
used to achieve improved results on the realistic high-fidelity version of the objective where only very few evaluations
can be performed.

The only dependency of the mf2 package is the numpy package.

The source for this package is hosted at github.com/sjvrijn/mf2.

Last updated: (Jun 09, 2022)

Contents 1

https://numpy.org/
https://github.com/sjvrijn/mf2

Multi-Fidelity Functions Documentation

2 Contents

CHAPTER 1

Contents

1.1 Installation

The recommended way to install mf2 is with Python’s pip:

python3 -m pip install --user mf2

or alternatively using conda:

conda install -c conda-forge mf2

For the latest version, you can install directly from source:

python3 -m pip install --user https://github.com/sjvrijn/mf2/archive/master.zip

To work in your own version locally, it is best to clone the repository first:

git clone https://github.com/sjvrijn/mf2.git
cd mf2
python3 -m pip install --user -e .[dev]

1.2 Example Usage

This example is a reproduction of Figure 1 from http://doi.org/10.1098/rspa.2007.1900 :

The original figure:

3

http://doi.org/10.1098/rspa.2007.1900

Multi-Fidelity Functions Documentation

Code to reproduce the above figure as close as possible:

1 # Typical imports: Matplotlib, numpy, sklearn and of course our mf2 package
2 import matplotlib.pyplot as plt
3 import mf2
4 import numpy as np
5 from sklearn.gaussian_process import GaussianProcessRegressor as GPR
6 from sklearn.gaussian_process import kernels
7

8 # Setting up
9 low_x = np.linspace(0, 1, 11).reshape(-1, 1)

10 high_x = low_x[[0, 4, 6, 10]]
11 diff_x = high_x
12

13 low_y = mf2.forrester.low(low_x)
14 high_y = mf2.forrester.high(high_x)
15 scale = 1.87 # As reported in the paper
16 diff_y = np.array([(mf2.forrester.high(x) - scale * mf2.forrester.low(x))[0]
17 for x in diff_x])
18

19 # Training GP models
20 kernel = kernels.ConstantKernel(constant_value=1.0) \

(continues on next page)

4 Chapter 1. Contents

Multi-Fidelity Functions Documentation

(continued from previous page)

21 * kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0))
22

23 gp_direct = GPR(kernel=kernel).fit(high_x, high_y)
24 gp_low = GPR(kernel=kernel).fit(low_x, low_y)
25 gp_diff = GPR(kernel=kernel).fit(diff_x, diff_y)
26

27 # Using a simple function to combine the two models
28 def co_y(x):
29 return scale * gp_low.predict(x) + gp_diff.predict(x)
30

31 # And finally recreating the plot
32 plot_x = np.linspace(start=0, stop=1, num=501).reshape(-1, 1)
33 plt.figure(figsize=(6, 5), dpi=600)
34 plt.plot(plot_x, mf2.forrester.high(plot_x), linewidth=2, color='black', label='f_e

→˓')
35 plt.plot(plot_x, mf2.forrester.low(plot_x), linewidth=2, color='black', linestyle='--

→˓',
36 label='f_c')
37 plt.scatter(high_x, high_y, marker='o', facecolors='none', color='black', label='y_e

→˓')
38 plt.scatter(low_x, low_y, marker='s', facecolors='none', color='black', label='y_c')
39 plt.plot(plot_x, gp_direct.predict(plot_x), linewidth=1, color='black', linestyle='--

→˓',
40 label='kriging through y_e')
41 plt.plot(plot_x, co_y(plot_x), linewidth=1, color='black', label='co-kriging')
42 plt.xlim([0, 1])
43 plt.ylim([-10, 20])
44 plt.xlabel('x')
45 plt.ylabel('y')
46 plt.legend(loc=2)
47 plt.tight_layout()
48 plt.savefig('../_static/recreating-forrester-2007.png')
49 plt.show()

Reproduced figure:

1.2. Example Usage 5

Multi-Fidelity Functions Documentation

1.3 Performance

Where possible, all functions are written using numpy to make use of optimized routines and vectorization. Evaluating
a single point typically takes less than 0.0001 seconds on a modern desktop system, regardless of function. This page
shows some more detailed information about the performance, even though this library should not be a bottleneck in
any programs.

The scripts for generating following performance overviews can be found in the docs/scripts folder of the repository.
Presented running times were measured on a desktop PC with an Intel Core i7 5820k 6-core CPU, with Python 3.6.3
and Numpy 1.18.4.

1.3.1 Performance Scaling

The image below shows how the runtime scales as N points are passed to the functions simultaneously as a matrix
of size (N, ndim). Performance for the high- and low-fidelity formulations are shown separately to give a fair
comparison: many low-fidelities are defined as computations on top of the high-fidelity definitions. As absolute

6 Chapter 1. Contents

https://numpy.org/
https://github.com/sjvrijn/mf2/tree/master/docs/scripts

Multi-Fidelity Functions Documentation

performance will vary per system, the runtime is divided by the time needed for N=1 as a normalization. This is done
independently for each function and fidelity level.

Up to N=1_000, the time required scales less than linearly thanks to efficient and vectorized numpy routines.

1.3.2 Performance Comparison

The following image shows how the scaling for the mf2 implementation of the Currin, Park91A, Park91B and
Borehole functions compares to the Matlab implementations by Surjanovic and Bingham, which can only evaluate
one point at a time, so do not use any vectorization. Measurements were performed using Matlab version R2020a
(9.8.0.1323502).

1.3. Performance 7

https://www.sfu.ca/~ssurjano/multi.html

Multi-Fidelity Functions Documentation

1.4 Getting Started

This page contains some explained examples to help get you started with using the mf2 package.

1.4.1 The Basics: What’s in a MultiFidelityFunction?

This package serves as a collection of functions with multiple fidelity levels. The number of levels is at least two, but
differs by function. Each function is encoded as a MultiFidelityFunction with the following attributes:

.name The name is simply a standardized format of the name as an attribute to help identify which function is being
represented1 .

.ndim Number of dimensions. This is the dimensionality (i.e. length) of the input vector X of which the objective is
evaluated.

.fidelity_names This is a list of the human-readable names given to each fidelity.

.u_bound, .l_bound The upper and lower bounds of the search-space for the function.

.functions A list of the actual function references. You won’t typically need this list though, as will be explained
next in Accessing the functions.

1.4.2 Simple Usage

Accessing the functions

As an example, we’ll use the booth function. As we can see using .ndim and the bounds, it is two-dimensional:

>>> from mf2 import booth
>>> print(booth.ndim)
2
>>> print(booth.l_bound, booth.u_bound)
[-10. -10.] [10. 10.]

Most multi-fidelity functions in mf2 are bi-fidelity functions, but a function can have any number of fidelities. A
bi-fidelity function has two fidelity levels, which are typically called high and low. You can easily check the names
of the fidelities by printing the fidelity_names attribute of a function:

>>> print(len(booth.fidelity_names))
2
>>> print(booth.fidelity_names)
['high', 'low']

These are just the names of the fidelities. The functions they represent can be accessed as an object-style attribute,

>>> print(booth.high)
<function booth_hf at 0x...>

as a dictionary-style key,

>>> print(booth['low'])
<function booth_lf at 0x...>

or with a list-style index (which just passes through to .functions).
1 This is as they’re instances of MultiFidelityFunction instead of separate classes.

8 Chapter 1. Contents

Multi-Fidelity Functions Documentation

>>> print(booth[0])
<function booth_hf at 0x...>
>>> print(booth[0] is booth.functions[0])
True

The object-style notation function.fidelity() is recommended for explicit access, but the other notations are
available for more dynamic usage. With the list-style access, the highest fidelity is always at index 0.

Calling the functions

All functions in the mf2 package assume row-vectors as input. To evaluate the function at a single point, it can
be given as a simple Python list or 1D numpy array. Multiple points can be passed to the function individually, or
combined into a 2D list/array. The output of the function will always be returned as a 1D numpy array:

>>> X1 = [0.0, 0.0]
>>> print(booth.high(X1))
[74.]
>>> X2 = [
... [1.0, 1.0],
... [1.0, -1.0],
... [-1.0, 1.0],
... [-1.0, -1.0]
...]
>>> print(booth.high(X2))
[20. 80. 72. 164.]

Using the bounds

Each function also has a given upper and lower bound, stored as a 1D numpy array. They will be of the same length,
and exactly as long as the dimensionality of the function2 .

Below is an example function to create a uniform sample within the bounds:

import numpy as np

def sample_in_bounds(func, n_samples):
raw_sample = np.random.random((n_samples, func.ndim))

scale = func.u_bound - func.l_bound
sample = (raw_sample * scale) + func.l_bound

return sample

1.4.3 Kinds of functions

Fixed Functions

The majority of multi-fidelity functions in this package are ‘fixed’ functions. This means that everything about the
function is fixed:

• dimensionality of the input

2 In fact, .ndim is defined as len(self.u_bound)

1.4. Getting Started 9

Multi-Fidelity Functions Documentation

• number of fidelity levels

• relation between the different fidelity levels

Examples of these functions include the 2D booth and 8D borehole functions.

Dynamic Dimensionality Functions

Some functions are dynamic in the dimensionality of the input they accept. An example of such a function is the
forrester function. The regular 1D function is included as mf2.forrester, but a custom n-dimensional version
can be obtained by calling the factory:

forrester_4d = mf2.Forrester(ndim=4)

This forrester_4d is then a regular fixed function as seen before.

Adjustable Functions

Other functions have a tunable parameter that can be used to adjust the correlation between the different high and low
fidelity levels. For these too, you can simply call a factory that will return a version of that function with the parameter
fixed to your specification:

paciorek_high_corr = mf2.adjustable.paciorek(a2=0.1)

The exact relationship between the input parameter and resulting correlation can be found in the documentation of the
specific functions. See for example paciorek.

1.4.4 Adding Your Own

Each function is stored as a MultiFidelityFunction-object, which contains the dimensionality, intended up-
per/lower bounds, and of course all fidelity levels. This class can also be used to define your own multi-fidelity
function.

To do so, first define regular functions for each fidelity. Then create the MultiFidelityFunction object by
passing a name, the upper and lower bounds, and a tuple of the functions for the fidelities.

The following is an example for a 1-dimensional multi-fidelity function named my_mf_sphere with three fidelities:

import numpy as np
from mf2 import MultiFidelityFunction

def sphere_hf(x):
return x*x

def sphere_mf(x):
return x * np.sqrt(x) * np.sign(x)

def sphere_lf(x):
return np.abs(x)

my_mf_sphere = MultiFidelityFunction(
name='sphere',
u_bound=[1],
l_bound=[-1],
functions=(sphere_hf, sphere_mf, sphere_lf),

)

10 Chapter 1. Contents

Multi-Fidelity Functions Documentation

These functions can be accessed using list-style indices, but as no names are given, the object-style attributes or
dict-style keys won’t work:

>>> print(my_mf_sphere[0])
<function sphere_hf at 0x...>
>>> print(my_mf_sphere['medium'])

IndexError Traceback (most recent call last)
...
IndexError: Invalid index 'medium'
>>> print(my_mf_sphere.low)

AttributeError Traceback (most recent call last)
...
AttributeError: 'MultiFidelityFunction' object has no attribute 'low'
>>> print(my_mf_sphere.fidelity_names)
None

To enable access by attribute or key, a tuple containing a name for each fidelity is required. Let’s extend the previous
example by adding fidelity_names=('high', 'medium', 'low'):

my_named_mf_sphere = MultiFidelityFunction(
name='sphere',
u_bound=[1],
l_bound=[-1],
functions=(sphere_hf, sphere_mf, sphere_lf),
fidelity_names=('high', 'medium', 'low'),

)

Now we the attribute and key access will work:

>>> print(my_named_mf_sphere[0])
<function sphere_hf at 0x...>
>>> print(my_named_mf_sphere['medium'])
<function sphere_mf at 0x...>
>>> print(my_named_mf_sphere.low)
<function sphere_lf at 0x...>
>>> print(my_named_mf_sphere.fidelity_names)
('high', 'medium', 'low')

1.5 mf2 package

1.5.1 Fixed Functions

MultiFidelityFunction

multi_fidelity_function.py:

Defines the MultiFidelityFunction class for encapsuling all fidelities and parameters of a multi-fidelity function. Also
contains any other utility functions that are commonly used by the various mf-functions in this package.

class AdjustableMultiFidelityFunction(name, u_bound, l_bound, static_functions, ad-
justable_functions, fidelity_names=None, *,
x_opt=None)

Bases: mf2.multi_fidelity_function.MultiFidelityFunction

1.5. mf2 package 11

Multi-Fidelity Functions Documentation

__init__(name, u_bound, l_bound, static_functions, adjustable_functions, fidelity_names=None, *,
x_opt=None)

All fidelity levels and parameters of a multi-fidelity function.

Parameters

• name – Name of the multi-fidelity function.

• u_bound – Upper bound of the intended input range. Length is also used to determine
the (fixed) dimensionality of the function.

• l_bound – Lower bound of the intended input range. Must be of same length as u_bound.

• static_functions – Iterable of function handles for the static, non-adjustable fideli-
ties, sorted in descending order.

• adjustable_functions – Iterable of function handles for the adjustable fidelities,
sorted in descending order.

• fidelity_names – List of names for the fidelities. Must be given to support
dictionary- or attribute- style fidelity indexing, such as f[‘high’]() and f.high()

• x_opt – Location of optimum x_opt for highest fidelity (if known).

functions
Combined static and adjustable functions

class MultiFidelityFunction(name, u_bound, l_bound, functions, fidelity_names=None, *,
x_opt=None)

Bases: object

__init__(name, u_bound, l_bound, functions, fidelity_names=None, *, x_opt=None)
All fidelity levels and parameters of a multi-fidelity function.

Parameters

• name – Name of the multi-fidelity function.

• u_bound – Upper bound of the intended input range. Length is also used to determine
the (fixed) dimensionality of the function.

• l_bound – Lower bound of the intended input range. Must be of same length as u_bound.

• functions – Iterable of function handles for the different fidelities, assumed to be sorted
in descending order.

• fidelity_names – List of names for the fidelities. Must be given to support
dictionary- or attribute-style fidelity indexing, such as f[‘high’]() and f.high()

• x_opt – Location of optimum x_opt for highest fidelity (if known).

bounds
Lower and upper bounds as a single np.array of shape (2, ndim).

functions

name

ndim
Dimensionality of the function. Inferred as len(self.u_bound).

invert(mff: mf2.multi_fidelity_function.MultiFidelityFunction)→ mf2.multi_fidelity_function.MultiFidelityFunction
Invert a MultiFidelityFunction by multiplying all fidelities by -1

Parameters mff – The MultiFidelityFunction to invert

Returns A new MultiFidelityFunction with the inverted fidelities

12 Chapter 1. Contents

Multi-Fidelity Functions Documentation

Bohachevsky

Implementation of the bi-fidelity Bohachevsky function as defined in:

Dong, H., Song, B., Wang, P. et al. Multi-fidelity information fusion based on prediction of kriging. Struct
Multidisc Optim 51, 1267–1280 (2015) doi:10.1007/s00158-014-1213-9

Function definitions:

𝑓ℎ(𝑥1, 𝑥2) = 𝑥2
1 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1)− 0.4 cos(4𝜋𝑥2) + 0.7

𝑓𝑙(𝑥1, 𝑥2) = 𝑓ℎ(0.7𝑥1, 𝑥2) + 𝑥1𝑥2 − 12

bohachevsky = MultiFidelityFunction(Bohachevsky, [5. 5.], [-5. -5.], fidelity_names=['high', 'low'])
2D Bohachevsky function with fidelities ‘high’ and ‘low’

bohachevsky_hf(xx)
BOHACHEVSKY FUNCTION

INPUT: xx = [x1, x2]

bohachevsky_lf(xx)
BOHACHEVSKY FUNCTION, LOWER FIDELITY CODE Calls: bohachevsky_hf This function, from Dong
et al. (2015), is used as the “low-accuracy code” version of the function bohachevsky_hf.

INPUT: xx = [x1, x2]

l_bound = [-5, -5]
Lower bound for Bohachevsky function

u_bound = [5, 5]
Upper bound for Bohachevsky function

Booth

Implementation of the bi-fidelity Booth function as defined in:

Dong, H., Song, B., Wang, P. et al. Multi-fidelity information fusion based on prediction of kriging. Struct
Multidisc Optim 51, 1267–1280 (2015) doi:10.1007/s00158-014-1213-9

Function definitions:

𝑓ℎ(𝑥1, 𝑥2) = (𝑥1 + 2𝑥2 − 7)2 + (2𝑥1 + 𝑥2 − 5)2

𝑓𝑙(𝑥1, 𝑥2) = 𝑓ℎ(0.4𝑥1, 𝑥2) + 1.7𝑥1𝑥2 − 𝑥1 + 2𝑥2

booth = MultiFidelityFunction(Booth, [10. 10.], [-10. -10.], fidelity_names=['high', 'low'])
2D Booth function with fidelities ‘high’ and ‘low’

booth_hf(xx)
BOOTH FUNCTION

INPUT: xx = [x1, x2]

booth_lf(xx)
BOOTH FUNCTION, LOWER FIDELITY CODE Calls: booth_hf This function, from Dong et al. (2015), is
used as the “low-accuracy code” version of the function booth_hf.

INPUT: xx = [x1, x2]

1.5. mf2 package 13

Multi-Fidelity Functions Documentation

l_bound = [-10, -10]
Lower bound for Booth function

u_bound = [10, 10]
Upper bound for Booth function

Borehole

Implementation of the bi-fidelity Borehole function as defined in:

Shifeng Xiong, Peter Z. G. Qian & C. F. Jeff Wu (2013) Sequential Design and Analysis of High-Accuracy
and Low-Accuracy Computer Codes, Technometrics, 55:1, 37-46, DOI: 10.1080/00401706.2012.723572

Function definitions:

𝑓𝑏(𝑥,𝐴,𝐵) =
𝐴 * 𝑇𝑢 * (𝐻𝑢 −𝐻𝑙)(︃

log(𝑟
𝑟𝑤

) * (𝐵 +
2𝐿 * 𝑇𝑢

log(𝑟
𝑟𝑤

) * 𝑟2𝑤 *𝐾𝑤
+

𝑇𝑢

𝑇𝑙

)︃

𝑓ℎ(𝑥) = 𝑓𝑏(𝑥, 2𝜋, 1)

𝑓𝑙(𝑥) = 𝑓𝑏(𝑥, 5, 1.5)

Adapted from matlab implementation at

https://www.sfu.ca/~ssurjano/borehole.html, retrieved 2017-10-02

by: Sonja Surjanovic and Derek Bingham, Simon Fraser University

Copyright 2013. Derek Bingham, Simon Fraser University.

THERE IS NO WARRANTY, EXPRESS OR IMPLIED. WE DO NOT ASSUME ANY LIABILITY FOR THE USE
OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly
marked. Additionally, this program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2.0 of the License. Accordingly,
this program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

borehole = MultiFidelityFunction(Borehole, [1.5000e-01 5.0000e+04 1.1560e+05 1.1100e+03 1.1600e+02 8.2000e+02 1.6800e+03 1.2045e+04], [5.000e-02 1.000e+02 6.307e+04 9.900e+02 6.310e+01 7.000e+02 1.120e+03 9.855e+03], fidelity_names=['high', 'low'])
8D Borehole function with fidelities ‘high’ and ‘low’

borehole_hf(xx)
BOREHOLE FUNCTION

INPUT AND OUTPUT: inputs = [rw, r, Tu, Hu, Tl, Hl, L, Kw] output = water flow rate

borehole_lf(xx)
BOREHOLE FUNCTION, LOWER FIDELITY CODE This function is used as the “low-accuracy code” ver-
sion of the function borehole_hf.

INPUT AND OUTPUT: inputs = [rw, r, Tu, Hu, Tl, Hl, L, Kw] output = water flow rate

l_bound = [0.05, 100, 63070, 990, 63.1, 700, 1120, 9855]
Lower bound for Borehole function

u_bound = [0.15, 50000, 115600, 1110, 116, 820, 1680, 12045]
Upper bound for Borehole function

14 Chapter 1. Contents

https://www.sfu.ca/~ssurjano/borehole.html

Multi-Fidelity Functions Documentation

Branin

Implementation of the bi-fidelity Branin function as defined in:

Dong, H., Song, B., Wang, P. et al. Multi-fidelity information fusion based on prediction of kriging. Struct
Multidisc Optim 51, 1267–1280 (2015) doi:10.1007/s00158-014-1213-9

Function definitions:

𝑓𝑏(𝑥1, 𝑥2) =

(︃
𝑥2 − (5.1

𝑥2
1

4𝜋2
) +

5𝑥1

𝜋
− 6

)︃2

+

(︃
10 cos(𝑥1)(1−

1

8𝜋

)︃
+ 10

𝑓ℎ(𝑥1, 𝑥2) = 𝑓𝑏(𝑥1, 𝑥2)− 22.5𝑥2

𝑓𝑙(𝑥1, 𝑥2) = 𝑓𝑏(0.7𝑥1, 0.7𝑥2)− 15.75𝑥2 + 20(0.9 + 𝑥1)
2 − 50

branin = MultiFidelityFunction(Branin, [10. 15.], [-5. 0.], fidelity_names=['high', 'low'])
2D Branin function with fidelities ‘high’ and ‘low’

branin_base(xx)
BRANIN FUNCTION

INPUT: xx = [x1, x2]

branin_hf(xx)
BRANIN FUNCTION, HIGH FIDELITY CODE Calls: branin_base This function, from Dong et al. (2015), is
used as the “high-accuracy code” version of the function based on the ‘traditional’ branin function.

INPUT: xx = [x1, x2]

branin_lf(xx)
BRANIN FUNCTION, LOWER FIDELITY CODE Calls: branin_base This function, from Dong et al. (2015),
is used as the “low-accuracy code” version of the function branin_hf.

INPUT: xx = [x1, x2]

l_bound = [-5, 0]
Lower bound for Branin function

u_bound = [10, 15]
Upper bound for Branin function

Currin

Implementation of the bi-fidelity Currin function as defined in:

Shifeng Xiong, Peter Z. G. Qian & C. F. Jeff Wu (2013) Sequential Design and Analysis of High-Accuracy
and Low-Accuracy Computer Codes, Technometrics, 55:1, 37-46, DOI: 10.1080/00401706.2012.723572

Function definitions:

𝑓ℎ(𝑥1, 𝑥2) =

(︃
1− exp(− 1

2𝑥2
)

)︃
2300𝑥3

1 + 1900𝑥2
1 + 2092𝑥1 + 60

100𝑥3
1 + 500𝑥2

1 + 4𝑥1 + 20

𝑓𝑙(𝑥1, 𝑥2) = (𝑓ℎ(𝑥1 + 0.05, 𝑥2 + 0.05)+

𝑓ℎ(𝑥1 + 0.05, 𝑥2 − 0.05)+

𝑓ℎ(𝑥1 − 0.05, 𝑥2 + 0.05)+

𝑓ℎ(𝑥1 − 0.05, 𝑥2 − 0.05))/4

Adapted from matlab implementation at

1.5. mf2 package 15

Multi-Fidelity Functions Documentation

https://www.sfu.ca/~ssurjano/curretal88exp.html, retrieved 2017-10-02

by: Sonja Surjanovic and Derek Bingham, Simon Fraser University

Copyright 2013. Derek Bingham, Simon Fraser University.

THERE IS NO WARRANTY, EXPRESS OR IMPLIED. WE DO NOT ASSUME ANY LIABILITY FOR THE USE
OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly
marked. Additionally, this program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2.0 of the License. Accordingly,
this program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

currin = MultiFidelityFunction(Currin, [1. 1.], [0. 0.], fidelity_names=['high', 'low'])
2D Currin function with fidelities ‘high’ and ‘low’

currin_hf(xx)
CURRIN ET AL. (1988) EXPONENTIAL FUNCTION

INPUT: xx = [x1, x2]

currin_lf(xx)
CURRIN ET AL. (1988) EXPONENTIAL FUNCTION, LOWER FIDELITY CODE Calls: currin_hf This
function, from Xiong et al. (2013), is used as the “low-accuracy code” version of the function currin_hf.

INPUT: xx = [x1, x2]

l_bound = [0, 0]
Lower bound for Currin function

u_bound = [1, 1]
Upper bound for Currin function

Forrester

forrester.py: Forrester function

This file contains the definition of an adapted version of the simple 1D example function as presented in:

Forrester Alexander I.J, Sóbester András and Keane Andy J “Multi-fidelity Optimization via Surrogate
Modelling”, Proceedings of the Royal Society A, vol. 463, http://doi.org/10.1098/rspa.2007.1900

Function definitions:

𝑓ℎ(𝑥) = (6𝑥− 2)2 sin(12𝑥− 4)

𝑓𝑙(𝑥) = 𝐴𝑓ℎ(𝑥) +𝐵(𝑥− 0.5) + 𝐶

With 𝐴 = 0.5, 𝐵 = 10 and 𝐶 = −5 as recommended parameters.

This version has been adapted to be multi-dimensional, input can be arbitrarily many dimensions. Output value is
calculated as the mean of the outcomes for all separate dimensions.

Forrester(ndim: int)
Factory method for ndim-dimensional multi-fidelity Forrester function

Parameters ndim – Desired dimensionality

Returns MultiFidelityFunction instance with bounds of appropriate length

forrester = MultiFidelityFunction(Forrester, [1.], [0.], fidelity_names=['high', 'low'])
1D Forrester function with fidelities ‘high’ and ‘low’

16 Chapter 1. Contents

https://www.sfu.ca/~ssurjano/curretal88exp.html
http://doi.org/10.1098/rspa.2007.1900

Multi-Fidelity Functions Documentation

forrester_high(xx)

forrester_low(xx, *, A=0.5, B=10, C=-5)

forrester_sf = MultiFidelityFunction(Forrester Single Fidelity, [1.], [0.], fidelity_names=['high'])
1D Forrester function with single fidelity ‘high’

l_bound = [0]
Lower bound for Forrester function

u_bound = [1]
Upper bound for Forrester function

Hartmann6

hartmann.py: contains the Hartmann6 function

As defined in

“Remarks on multi-fidelity surrogates” by Chanyoung Park, Raphael T. Haftka and Nam H. Kim (2016)

Function definitions:

𝑓ℎ(𝑥1, ..., 𝑥6) = − 1

1.94

(︃
2.58 +

4∑︁
𝑖=1

𝛼𝑖 exp
(︁
−

6∑︁
𝑗=1

𝐴𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)
2
)︁)︃

𝑓𝑙(𝑥1, ..., 𝑥6) = − 1

1.94

(︃
2.58 +

4∑︁
𝑖=1

𝛼′
𝑖𝑓𝑒𝑥𝑝

(︁
−

6∑︁
𝑗=1

𝐴𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)
2
)︁)︃

𝑓𝑒𝑥𝑝(𝑥) = (exp(−4/9) + (exp(−4/9) * (𝑥+ 4)/9))9

with the following matrices and vectors:

𝐴 =

⎛⎜⎜⎝
10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.70 10 17 8
17 8 0.05 10 0.1 14

⎞⎟⎟⎠

𝑃 = 10−4

⎛⎜⎜⎝
1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞⎟⎟⎠
𝛼 = {0.5, 0.5, 2.0, 4.0}
𝛼′ = {1.0, 1.2, 3.0, 3.2}

hartmann6 = MultiFidelityFunction(Hartmann6, [1. 1. 1. 1. 1. 1.], [0.1 0.1 0.1 0.1 0.1 0.1], fidelity_names=['high', 'low'])
6D Hartmann6 function with fidelities ‘high’ and ‘low’

hartmann6_hf(xx)

hartmann6_lf(xx)

l_bound = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
Lower bound for Hartmann6 function

u_bound = [1, 1, 1, 1, 1, 1]
Upper bound for Hartmann6 function

1.5. mf2 package 17

Multi-Fidelity Functions Documentation

Himmelblau

Implementation of the bi-fidelity Himmelblau function as defined in:

Dong, H., Song, B., Wang, P. et al. Multi-fidelity information fusion based on prediction of kriging. Struct
Multidisc Optim 51, 1267–1280 (2015) doi:10.1007/s00158-014-1213-9

Function definitions:

𝑓ℎ(𝑥1, 𝑥2) = (𝑥2
1 + 𝑥2 − 11)2 + (𝑥2

2 + 𝑥1 − 7)2

𝑓𝑙(𝑥1, 𝑥2) = 𝑓ℎ(0.5𝑥1, 0.8𝑥2) + 𝑥3
2 − (𝑥1 + 1)2

himmelblau = MultiFidelityFunction(Himmelblau, [4. 4.], [-4. -4.], fidelity_names=['high', 'low'])
2D Himmelblau function with fidelities ‘high’ and ‘low’

himmelblau_hf(xx)
HIMMELBLAU FUNCTION

INPUT: xx = [x1, x2]

himmelblau_lf(xx)
HIMMELBLAU FUNCTION, LOWER FIDELITY CODE Calls: himmelblau_hf This function, from Dong et
al. (2015), is used as the “low-accuracy code” version of the function himmelblau_hf.

INPUT: xx = [x1, x2]

l_bound = [-4, -4]
Lower bound for Himmelblau function

u_bound = [4, 4]
Upper bound for Himmelblau function

Park91 A

Implementation of the bi-fidelity Park (‘91) A function as defined in:

Shifeng Xiong, Peter Z. G. Qian & C. F. Jeff Wu (2013) Sequential Design and Analysis of High-Accuracy
and Low-Accuracy Computer Codes, Technometrics, 55:1, 37-46, DOI: 10.1080/00401706.2012.723572

Function definitions:

𝑓ℎ(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
𝑥1

2

(︃√︂
1 + (𝑥2 + 𝑥2

3) *
𝑥4

𝑥2
1

− 1

)︃
+ (𝑥1 + 3𝑥4) exp(1 + sin(𝑥3))

𝑓𝑙(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (1 + sin(𝑥1)/10)𝑓ℎ(𝑥1, 𝑥2, 𝑥3, 𝑥4) +−2𝑥1 + 𝑥2
2 + 𝑥2

3 + 0.5

Adapted from matlab implementation at

https://www.sfu.ca/~ssurjano/park91a.html, retrieved 2017-10-02

by: Sonja Surjanovic and Derek Bingham, Simon Fraser University

Copyright 2013. Derek Bingham, Simon Fraser University.

THERE IS NO WARRANTY, EXPRESS OR IMPLIED. WE DO NOT ASSUME ANY LIABILITY FOR THE USE
OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly
marked. Additionally, this program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2.0 of the License. Accordingly,
this program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

18 Chapter 1. Contents

https://www.sfu.ca/~ssurjano/park91a.html

Multi-Fidelity Functions Documentation

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

l_bound = [1e-08, 0, 0, 0]
Lower bound for Park91A function

park91a = MultiFidelityFunction(Park91A, [1. 1. 1. 1.], [1.e-08 0.e+00 0.e+00 0.e+00], fidelity_names=['high', 'low'])
4D Park91A function with fidelities ‘high’ and ‘low’

park91a_hf(xx)
PARK (1991) FUNCTION 1

INPUT: xx = [x1, x2, x3, x4]

park91a_lf(xx)
PARK (1991) FUNCTION 1, LOWER FIDELITY CODE Calls: park91a_hf This function, from Xiong et al.
(2013), is used as the “low-accuracy code” version of the function park91a_hf.

INPUT: xx = [x1, x2, x3, x4]

u_bound = [1, 1, 1, 1]
Upper bound for Park91A function

Park91 B

Implementation of the bi-fidelity Park (‘91) B function as defined in:

Shifeng Xiong, Peter Z. G. Qian & C. F. Jeff Wu (2013) Sequential Design and Analysis of High-Accuracy
and Low-Accuracy Computer Codes, Technometrics, 55:1, 37-46, DOI: 10.1080/00401706.2012.723572

Function definitions:

𝑓ℎ(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
2

3
exp(𝑥1 + 𝑥2)− 𝑥4 sin(𝑥3) + 𝑥3

𝑓𝑙(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 1.2𝑓ℎ(𝑥1, 𝑥2, 𝑥3, 𝑥4)− 1

Adapted from matlab implementation at

https://www.sfu.ca/~ssurjano/park91b.html, retrieved 2017-10-02

by: Sonja Surjanovic and Derek Bingham, Simon Fraser University

Copyright 2013. Derek Bingham, Simon Fraser University.

THERE IS NO WARRANTY, EXPRESS OR IMPLIED. WE DO NOT ASSUME ANY LIABILITY FOR THE USE
OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly
marked. Additionally, this program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2.0 of the License. Accordingly,
this program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

l_bound = [0, 0, 0, 0]
Lower bound for Park91B function

park91b = MultiFidelityFunction(Park91B, [1. 1. 1. 1.], [0. 0. 0. 0.], fidelity_names=['high', 'low'])
4D Park91B function with fidelities ‘high’ and ‘low’

park91b_hf(xx)
PARK (1991) FUNCTION 2

INPUT: xx = [x1, x2, x3, x4]

1.5. mf2 package 19

https://www.sfu.ca/~ssurjano/park91b.html

Multi-Fidelity Functions Documentation

park91b_lf(xx)
PARK (1991) FUNCTION 2, LOWER FIDELITY CODE Calls: park91b_hf This function, from Xiong et al.
(2013), is used as the “low-accuracy code” version of the function park91b_hf.

INPUT: xx = [x1, x2, x3, x4]

u_bound = [1, 1, 1, 1]
Upper bound for Park91B function

Six-Hump Camelback

Implementation of the bi-fidelity Six-hump Camel-back function as defined in:

Dong, H., Song, B., Wang, P. et al. Multi-fidelity information fusion based on prediction of kriging. Struct
Multidisc Optim 51, 1267–1280 (2015) doi:10.1007/s00158-014-1213-9

Function definitions:

𝑓ℎ(𝑥1, 𝑥2) = 4𝑥2
1 − 2.1𝑥4

1 +
𝑥6
1

3
+ 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥4
2

𝑓𝑙(𝑥1, 𝑥2) = 𝑓ℎ(0.7𝑥1, 0.7𝑥2) + 𝑥1𝑥2 − 15

l_bound = [-2, -2]
Lower bound for Six-hump Camelback function

six_hump_camelback = MultiFidelityFunction(Six Hump Camelback, [2. 2.], [-2. -2.], fidelity_names=['high', 'low'])
2D Six-hump Camelback function with fidelities ‘high’ and ‘low’

six_hump_camelback_hf(xx)
SIX-HUMP CAMEL-BACK FUNCTION

INPUT: xx = [x1, x2]

six_hump_camelback_lf(xx)
SIX-HUMP CAMEL-BACK FUNCTION, LOWER FIDELITY CODE Calls: sixHumpCamelBack_hf This
function, from Dong et al. (2015), is used as the “low-accuracy code” version of the function sixHumpCamel-
Back_hf.

INPUT: xx = [x1, x2]

u_bound = [2, 2]
upper bound for Six-hump Camelback function

1.5.2 Adjustable Functions

Adjustable Branin

Implementation of the adjustable bi-fidelity Branin function as defined in:

Toal, D.J.J. Some considerations regarding the use of multi- fidelity Kriging in the construction of surro-
gate models. Struct Multidisc Optim 51, 1223–1245 (2015) doi:10.1007/s00158-014-1209-5

Function definitions:

𝑓ℎ(𝑥1, 𝑥2) =

(︃
𝑥2 − (5.1

𝑥2
1

4𝜋2
) +

5𝑥1

𝜋
− 6

)︃2

+

(︃
10 cos(𝑥1)(1−

1

8𝜋

)︃
+ 10

20 Chapter 1. Contents

Multi-Fidelity Functions Documentation

𝑓𝑙(𝑥1, 𝑥2) = 𝑓ℎ(𝑥1, 𝑥2)− (𝑎+ 0.5)

(︃(︃
𝑥2 − (5.1

𝑥2
1

4𝜋2
) +

5𝑥1

𝜋
− 6

)︃2)︃
where 𝑎 ∈ [0, 1] is the adjustable parameter.

Note that 𝑓ℎ is equal to the non-adjustable 𝑓𝑏 defined in mf2.branin.

adjustable_branin_lf(xx, a)

Adjustable Paciorek

Implementation of the adjustable bi-fidelity Paciorek function as defined in:

Toal, D.J.J. Some considerations regarding the use of multi- fidelity Kriging in the construction of surro-
gate models. Struct Multidisc Optim 51, 1223–1245 (2015) doi:10.1007/s00158-014-1209-5

Function definitions:

𝑓ℎ(𝑥1, 𝑥2) = sin
(︁ 1

𝑥1𝑥2

)︁
𝑓𝑙(𝑥1, 𝑥2) = 𝑓ℎ(𝑥1, 𝑥2)− 9𝑎2 cos

(︁ 1

𝑥1𝑥2

)︁
where 𝑎 ∈ (0, 1] is the adjustable parameter

adjustable_paciorek_lf(xx, a)

paciorek_hf(xx)

Adjustable Hartmann3

Implementation of the adjustable bi-fidelity Hartmann3 function as defined in:

Toal, D.J.J. Some considerations regarding the use of multi- fidelity Kriging in the construction of surro-
gate models. Struct Multidisc Optim 51, 1223–1245 (2015) doi:10.1007/s00158-014-1209-5

Function definitions:

𝑓ℎ(𝑥1, 𝑥2, 𝑥3) = −
4∑︁

𝑖=1

𝛼𝑖 exp

(︃
−

3∑︁
𝑗=1

𝛽𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)
2

)︃

𝑓𝑙(𝑥1, 𝑥2, 𝑥3) = −
4∑︁

𝑖=1

𝛼𝑖 exp

(︃
−

3∑︁
𝑗=1

𝛽𝑖𝑗

(︁
𝑥𝑗 −

3

4
𝑃𝑖𝑗(𝑎+ 1)

)︁2)︃
with the following matrices and vectors:

𝛽 =

⎛⎜⎜⎝
3 10 30
0.1 10 35
3 10 30
0.1 10 35

⎞⎟⎟⎠

𝑃 = 10−4

⎛⎜⎜⎝
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎞⎟⎟⎠
𝛼 = {1.0, 1.2, 3.0, 3.2}

and where 𝑎 ∈ [0, 1] is the adjustable parameter.

adjustable_hartmann3_lf(xx, a)

hartmann3_hf(xx)

1.5. mf2 package 21

Multi-Fidelity Functions Documentation

Adjustable Trid

Implementation of the adjustable bi-fidelity Trid function as defined in:

Toal, D.J.J. Some considerations regarding the use of multi- fidelity Kriging in the construction of surro-
gate models. Struct Multidisc Optim 51, 1223–1245 (2015) doi:10.1007/s00158-014-1209-5

𝑓ℎ(𝑥1, ..., 𝑥10) =

10∑︁
𝑖=1

(𝑥𝑖 − 1)2 −
10∑︁
𝑖=2

𝑥𝑖𝑥𝑖−1

𝑓𝑙(𝑥1, ..., 𝑥10) =

10∑︁
𝑖=1

(𝑥𝑖 − 𝑎)2 − (𝑎− 0.65)

10∑︁
𝑖=2

𝑥𝑖𝑥𝑖−1

where 𝑎 ∈ [0, 1] is the adjustable parameter

adjustable_trid_lf(xx, a)

trid_hf(xx)

22 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

23

Multi-Fidelity Functions Documentation

24 Chapter 2. Indices and tables

Python Module Index

m
mf2.adjustable.branin, 20
mf2.adjustable.hartmann, 21
mf2.adjustable.paciorek, 21
mf2.adjustable.trid, 22
mf2.bohachevsky, 13
mf2.booth, 13
mf2.borehole, 14
mf2.branin, 15
mf2.currin, 15
mf2.forrester, 16
mf2.hartmann, 17
mf2.himmelblau, 18
mf2.multi_fidelity_function, 11
mf2.park91a, 18
mf2.park91b, 19
mf2.six_hump_camelback, 20

25

Multi-Fidelity Functions Documentation

26 Python Module Index

Index

Symbols
__init__() (AdjustableMultiFidelityFunction

method), 11
__init__() (MultiFidelityFunction method), 12

A
adjustable_branin_lf() (in module

mf2.adjustable.branin), 21
adjustable_hartmann3_lf() (in module

mf2.adjustable.hartmann), 21
adjustable_paciorek_lf() (in module

mf2.adjustable.paciorek), 21
adjustable_trid_lf() (in module

mf2.adjustable.trid), 22
AdjustableMultiFidelityFunction (class in

mf2.multi_fidelity_function), 11

B
bohachevsky (in module mf2.bohachevsky), 13
bohachevsky_hf() (in module mf2.bohachevsky), 13
bohachevsky_lf() (in module mf2.bohachevsky), 13
booth (in module mf2.booth), 13
booth_hf() (in module mf2.booth), 13
booth_lf() (in module mf2.booth), 13
borehole (in module mf2.borehole), 14
borehole_hf() (in module mf2.borehole), 14
borehole_lf() (in module mf2.borehole), 14
bounds (MultiFidelityFunction attribute), 12
branin (in module mf2.branin), 15
branin_base() (in module mf2.branin), 15
branin_hf() (in module mf2.branin), 15
branin_lf() (in module mf2.branin), 15

C
currin (in module mf2.currin), 16
currin_hf() (in module mf2.currin), 16
currin_lf() (in module mf2.currin), 16

F
forrester (in module mf2.forrester), 16

Forrester() (in module mf2.forrester), 16
forrester_high() (in module mf2.forrester), 16
forrester_low() (in module mf2.forrester), 17
forrester_sf (in module mf2.forrester), 17
functions (AdjustableMultiFidelityFunction at-

tribute), 12
functions (MultiFidelityFunction attribute), 12

H
hartmann3_hf() (in module

mf2.adjustable.hartmann), 21
hartmann6 (in module mf2.hartmann), 17
hartmann6_hf() (in module mf2.hartmann), 17
hartmann6_lf() (in module mf2.hartmann), 17
himmelblau (in module mf2.himmelblau), 18
himmelblau_hf() (in module mf2.himmelblau), 18
himmelblau_lf() (in module mf2.himmelblau), 18

I
invert() (in module mf2.multi_fidelity_function), 12

L
l_bound (in module mf2.bohachevsky), 13
l_bound (in module mf2.booth), 14
l_bound (in module mf2.borehole), 14
l_bound (in module mf2.branin), 15
l_bound (in module mf2.currin), 16
l_bound (in module mf2.forrester), 17
l_bound (in module mf2.hartmann), 17
l_bound (in module mf2.himmelblau), 18
l_bound (in module mf2.park91a), 19
l_bound (in module mf2.park91b), 19
l_bound (in module mf2.six_hump_camelback), 20

M
mf2.adjustable.branin (module), 20
mf2.adjustable.hartmann (module), 21
mf2.adjustable.paciorek (module), 21
mf2.adjustable.trid (module), 22

27

Multi-Fidelity Functions Documentation

mf2.bohachevsky (module), 13
mf2.booth (module), 13
mf2.borehole (module), 14
mf2.branin (module), 15
mf2.currin (module), 15
mf2.forrester (module), 16
mf2.hartmann (module), 17
mf2.himmelblau (module), 18
mf2.multi_fidelity_function (module), 11
mf2.park91a (module), 18
mf2.park91b (module), 19
mf2.six_hump_camelback (module), 20
MultiFidelityFunction (class in

mf2.multi_fidelity_function), 12

N
name (MultiFidelityFunction attribute), 12
ndim (MultiFidelityFunction attribute), 12

P
paciorek_hf() (in module mf2.adjustable.paciorek),

21
park91a (in module mf2.park91a), 19
park91a_hf() (in module mf2.park91a), 19
park91a_lf() (in module mf2.park91a), 19
park91b (in module mf2.park91b), 19
park91b_hf() (in module mf2.park91b), 19
park91b_lf() (in module mf2.park91b), 19

S
six_hump_camelback (in module

mf2.six_hump_camelback), 20
six_hump_camelback_hf() (in module

mf2.six_hump_camelback), 20
six_hump_camelback_lf() (in module

mf2.six_hump_camelback), 20

T
trid_hf() (in module mf2.adjustable.trid), 22

U
u_bound (in module mf2.bohachevsky), 13
u_bound (in module mf2.booth), 14
u_bound (in module mf2.borehole), 14
u_bound (in module mf2.branin), 15
u_bound (in module mf2.currin), 16
u_bound (in module mf2.forrester), 17
u_bound (in module mf2.hartmann), 17
u_bound (in module mf2.himmelblau), 18
u_bound (in module mf2.park91a), 19
u_bound (in module mf2.park91b), 20
u_bound (in module mf2.six_hump_camelback), 20

28 Index

	Contents
	Installation
	Example Usage
	Performance
	Getting Started
	mf2 package

	Indices and tables
	Python Module Index
	Index

